Some generic properties of level spacing distributions of 2D real random matrices

نویسندگان

  • Siegfried Grossmann
  • Marko Robnik
چکیده

Abstract: We study the level spacing distribution P (S) of 2D real random matrices both symmetric as well as general, non-symmetric. In the general case we restrict ourselves to Gaussian distributed matrix elements, but different widths of the various matrix elements are admitted. The following results are obtained: An explicit exact formula for P (S) is derived and its behaviour close to S = 0 is studied analytically, showing that there is linear level repulsion, unless there are additional constraints for the probability distribution of the matrix elements. The constraint of having only positive or only negative but otherwise arbitrary non-diagonal elements leads to quadratic level repulsion with logarithmic corrections. These findings detail and extend our previous results already published in a preceding paper. For the symmetric real 2D matrices also other, non-Gaussian statistical distributions are considered. In this case we show for arbitrary statistical distribution of the diagonal and non-diagonal elements that the level repulsion exponent ρ is always ρ = 1, provided the distribution function of the matrix elements is regular at zero value. If the distribution function of the matrix elements is a singular (but still integrable) power law near zero value of S, the level spacing distribution P (S) is a fractional exponent pawer law at small S. The tail of P (S) depends on further details of the matrix element statistics. We explicitly work out four cases: the constant (box) distribution, the Cauchy-Lorentz distribution, the exponential distribution and, as an example for a singular distribution, the power law distribution for P (S) near zero value times an exponential tail.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Level density and level-spacing distributions of random, self-adjoint, non-Hermitian matrices.

We investigate the level density σ(x) and the level-spacing distribution p(s) of random matrices M = AF ≠ M{†}, where F is a (diagonal) inner product and A is a random, real, symmetric or complex, Hermitian matrix with independent entries drawn from a probability distribution q(x) with zero mean and finite higher moments. Although not Hermitian, the matrix M is self-adjoint with respect to F an...

متن کامل

The Energy Level Spacing for Two Harmonic Oscillators with Generic Ratio of Frequencies

The limit distribution of energy level spacing is studied for the system of two harmonic oscillators with generic ratio of frequencies. It is proved that for any fixed generic ratio e no limit distribution exists, but for random e with any absolutely continuous distribution p(e)de on [0, 1] a universal random limit distribution of the energy level spacing exists. Some properties of the random l...

متن کامل

Spectral statistics for ensembles of various real random matrices

We investigate spacing statistics for ensembles of various real random matrices where the matrixelements have various Probability Distribution Function (PDF: f(x)) including Gaussian. For two modifications of 2 × 2 matrices with various PDFs, we derived that spacing distribution p(s) of adjacent energy eigenvalues are distinct. Nevertheless, they show the linear level repulsion near s = 0 as αs...

متن کامل

Finite Difference Distributions for Ginibre Ensemble

The Ginibre ensemble of complex random matrices is studied. The complex valued random variable of second difference of complex energy levels is defined. For the N=3 dimensional ensemble are calculated distributions of second difference, of real and imaginary parts of second difference, as well as of its radius and of its argument (angle). For the generic N-dimensional Ginibre ensemble an exact ...

متن کامل

Finite-difference distributions for the Ginibre ensemble

The Ginibre ensemble of complex random matrices is studied. The complex-valued random variable of the second difference of complex energy levels is defined. For the N = 3 dimensional ensemble, we calculate distributions of the second difference real and imaginary parts, as well as its radius and of its argument (angle). For the generic N -dimensional Ginibre ensemble an exact analytical formula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008